CARBON MAGNETIC RESONANCE OF ORGANOMETALLIC COMPOUNDS: PHENYL AND BENZYL TRIMETHYL STANNANES AND RELATED COMPOUNDS

D. DODDRELL

(Department of Organic Chemistry, University of New England, N.S.W.) M.L. BULLPITT, C.J. MOORE, C.W. FONG AND W. KITCHING* (Department of Chemistry, University of Queensland, Brisbane.) W. ADCOCK AND B.D. GUPTA

(School of Physical Sciences, Flinders University, Adelaide, S.A.) (Received in UK 2 January 1973; accepted for publication 17 January 1973)

As part of our studies of the 13 C nmr spectra of certain classes of organometallic compounds, we wish to report the chief features of the proton-decoupled, natural abundance spectra of series of *meta* and *para*-substituted phenyl and benzyltrimethyl stannanes, and the related allenyl (1,2-propadienyl) and allyl (3-propenyl) compounds.

Phenyltrimethylstannanes: The chemical shift and ¹³C-¹¹⁹Sn, ¹¹⁷Sn coupling constants are listed in Table 1. Assignments were made on the basis of signal intensities, chemical shifts and the relative magnitudes of ¹¹⁹Sn-¹³C coupling constants. In appropriate cases, values of $J_{19_{F-}13_{C}}$ have also been employed.

COMPOUND	R	Cl	C ₂	C ₃	C4	C ₅	C ₆	CH3-Sn
	Н	51,2	57.2	64.8	64.8	-	-	203.2
$R \xrightarrow{3}{2} Sn(CH_3)_3$		(473.0)	(35.4)	(45.4)	(10.0)			(351.4)
	C1	55.9	59.0	67.7	61.3	-	-	203.1
	3	(452.0)	(38.0)	(47.0)	(11.5)			(348.0)
	CF ₃	45.2	56.9	68.5	61.8	-	-	203.5
		+	(37.0)	(38.6)	(<10)			+
	OCH ₃	61.2	56.2	78.7	32.4	-	-	204.4
		(488)	(42.0)	(52.0)	(<10)			(347)
	CH ₃	55.4	57.10	63.8	55.2	-	-	202.7
$4 \underbrace{5}_{R} \underbrace{5}_{2} \underbrace{5}_{R} \underbrace{5}_{R} \operatorname{Sn}(CH_{3})_{3}$		(488)	(42.0)	(52.0)	(<10)			(350)
	C1	48.2	57.4	58.3	64.5	63.6	59.3	202.6
		(442.0)	(38.7)	(61.0)	(<10)	(47.0)	(34.6)	(356.8)
	3 CF 3	48.7	60.5	62.2	67.9	64.7	53.4	203.2
		+	+	t	+	(46.0)	(35.0)	+
	OCH ₃	49.3	71.3	33.4	70.5	63.6	64.7	202.6
		(474)	(40.0)	(52.0)	(<10)	(51.0)	(37.0)	(346.0)
	CH ₃	51.6	56.6	56.1	64.0	65.0	60,2	202.9
		(482)	(36.0)	(47.0)	(<10)	(48.0)	(37)	(344)

TABLE 1

Chemical shifts in p.p.m. from CS₂. Values in parentheses are coupling constants in Hz and only the ¹¹⁹Sn-¹³C constants are tabulated. For coupling constants <100 Hz, the ¹¹⁹Sn and ¹¹⁷Sn values are unresolved.

+ = not determined.

In general, the chemical shifts of aryl carbons in the above compounds respond to the nature of R in the expected way 1 , and the chemical shift of C $_1$ in para -R-C $_6H_4$ -Sn(CH $_3)_3$ was correlated satisfactorily with the shift of $\rm C_4$ in $\rm C_6H_5-R$ (by a line through the origin and the point for R=H) suggesting that π -electron withdrawal by Sn(CH₃)₃ was unimportant or somehow balanced by other substituent-induced effects. The C_1 -¹¹⁹Sn coupling constants respond to substituents and range from <u>ca</u> 488 Hz for p-CH₃ and p-OCH₃ to 452 Hz for p-C1, and 442 Hz for m-C1. For substituents with larger σ -constants, the coupling constants decline. The opposite trend occurs in the ¹¹⁹Sn-CH₃ coupling constants although the range is much less eg. for m-C1, J=356.8 Hz while for p-OCH₃, J=347 Hz. These responses are accommodated by the hypothesis² that as the electron donating ability of R increases those hybrid orbitals directed from Sn to C_1 will have exalted Ss character and hence an increased coupling constant if the (Fermi) contact mechanism is dominant. This does seem indicated by the relative magnitudes of J_{C_1} -¹¹⁹Sn (473 Hz) and J_{CH_3} -¹¹⁹Sn (351 Hz) which reflect the s-coefficient ratio for sp² and sp³ hybridised carbons in the crude V.B. approach.

It is noteworthy that the order of coupling to ring carbons is $J_{C_1-Sn}^{J_3}J_{C_3-Sn}^{J_3}$, $J_{C_2-Sn}^{J_3}J_{C_4-Sn}^{J_3}$, which order is also obeyed for C_6H_5-X where X=H, B⁰,C,P[⊕],Hg,Pb.^{3,4,5}

The data is condensed in Table 2.

COMPOUND	R	C ₁	C ₂	C ₃	C4	C ₅	C ₆	CH2-Sn	(CH ₃) ₃ Sn
$R \xrightarrow{4} CH_2 - C(CH_3)_3$	Н	53.3	62.5	65.0	67.1		-	-	-
32	н ‡	50.0	66.0	64.4	69.5	-	-	172.3	202.9
R = 4		(36.6)*	(22.6)*	(12.0)*	(14.8)*	-	-	(285.4)	(322)
	C1	51.2	64.9	64.6	64.3	-	-	173.3	203.0
	CF ₃	43.4	65.2	66.8	66.9	-	-	171.7	203.0
	CH ₃	53.4	66.0	63.8	60.7	-	-	173.4	203.0
5	C1	47.2	67.8	58,7	69.4	63.2	66.1	172.7	203.1
4 $()$ 1 CH_2 - Sn(CH_3) ₃		(38.0)*	(22.5)*	(15)*	(15)*	(12.2)*	(22.5)*	(280.)	(327)
$\frac{3}{3}$	CF ₃	47.2	72.6	61.5	69.0	63.4	62.1	171.9	203.0
	CH_3	50.3	65.4	55.5	68.8	64.7	69.0	173	203.3
		(38.5)*	(23.0)*	(13.6)*	(15.4)*	(13.2)*	(22.2)*	+	+

TABLE 2

+ = Not determined. *=¹¹⁹Sn,¹¹⁷Sn couplings not resolved.

* Assignments confirmed by examination of O-deuterated compound.

Regarding chemical shifts, the most noteworthy feature is the increased shielding of C₄ in benzyltrimethylstannane compared with the carbon analogue, neopentylbenzene. (Δ =2.4 p.p.m.). This is in line with the pronounced hyperconjugative electron-releasing ability of the CH₂Sn(CH₃)₃ substituent^{3,6}. Note also the variation in coupling from ¹¹⁹Sn to aryl carbons where in the benzyl case, $J_{C_1-Sn}>J_{C_2-Sn}>J_{C_3-Sn}$ (cf. phenyl case where $J_{C_3-Sn}>J_{C_4-Sn}$). The larger coupling to C₄ compared with C₃, may also be due to a C-Sn σ - π resonance interaction with the ring, promoting the π -type coupling mechanism to C₄³.

Other systems capable of sustaining appreciable σ - π interactions are the allyl⁷ and allenyl trimethylstannanes, and here $J_{C_3-S_n} > J_{C_2-S_n}$ also.

82.8	55.7	175	203.3	129.0	-17.8	117.6	202.2
CH ₂	Сн	- CH ₂	- Sn (CH ₃) ₃	CH ₂	c <u> </u>	Сн	$Sn(CH_3)_3$
(52.9)	(48)	(298)	(325)	(45.5)	(13.0)	(382)	(356)

Notice the variation in $J_{119}_{Sn-C_1}$ in both systems due to the differing s-content in the C₁ hybrid orbital directed to Sn.

The ¹³C n.m.r. data on phenyl, benzyl and related compounds⁸ provides a basis for assignments in organo-tin systems and has facilitated assignments in larger ring systems⁹.

We thank the Australian Research Grants Committee for support of this work and Prof. N.V. Riggs for some helpful discussions. M.& T. Corp., donated quantities of organotin compounds.

REFERENCES

- 1. See, for example G.L. Nelson, G.C. Levy and J.D. Cargioli, J. Amer. Chem. Soc., 94 3089(1972)
- 2. H.A. Bent, Chem. Rev., 61 275 (1961)
- 3. D.Doddrell, B.D. Gupta, W. Adcock, M. Bullpitt and W. Kitching, J. Amer. Chem. Soc., submitted.
- 4. F.J. Weigert and J.D. Roberts, J. Amer. Chem. Soc, 91 4940 (1969).
- 5. A.M. Ihrig and J.L. Marshall, J. Amer. Chem. Soc., 94 1756 (1972).
- 6. W. Hanstein, H.J. Berwin and T.G. Traylor, J. Amer. Chem. Soc., 92 7476 (1970)
- 7. R.D. Bach and P.A. Scharr, J. Amer. Chem. Soc., 94 220 (1972) & subsequent papers.
- 8. M.Bullpitt, W. Kitching, W. Adcock and D. Doddrell, Chem. Comm., (submitted).
- 9. M. Bullpitt. Unpublished results.