CARBON MAGNETIC RESONANCE OF ORGANOMETALLIC COMPOUNDS: PHENYL AND BENZYL TRIMETHYL STANNANES AND RELATED COMPOUNDS

D. DODDRELL

(Department of Organic Chemistry, University of New England, N.S.W.) M.L. BULLPITT, C.J. MOORE, C.W. FONG AND W. KITCHING* (Department of Chemistry, University of Queensland, Brisbane.) W. ADCOCK AND B.D. GUPTA

(School of Physical Sciences, Flinders University, Adelaide, S.A.) (Received in UK 2 January 1973; accepted for publication 17 January 1973)

As part of our studies of the $13C$ nmr spectra of certain classes of organometallic compounds, we wish to report the chief features of the proton-decoupled, natural abundance spectra of series of *meta and* para-substituted phenyl and benzyltrimethyl stannanes, and the related allenyl $(1,2$ -propadienyl) and allyl $(3$ -propenyl) compounds.

Phenyltrimethylstannanes: The chemical shift and ¹³C-¹¹⁹Sn, ¹¹⁷Sn coupling constants are listed in Table 1. Assignments were made on the basis of signal intensities, chemical shifts and the relative magnitudes of $119\text{Sn-}13C$ coupling constants. In appropriate cases, values of $J_{19_{F-13c}}$ have also been employed.

TABLE 1

Chemical shifts in p.p.m. from CS_2 . Values in parentheses are coupling constants in Hz and only the $^{119}Sn^{-13}C$ constants are tabulated. For coupling constants <100 Hz, the 119 Sn and 117 Sn values are unresolved.

t = not determined.

In general, the chemical shifts of aryl carbons in the above compounds respond to the nature of R in the expected way¹, and the chemical shift of C₁ in para $-R-C_6H_4-Sn(CH_3)_3$ was correlated satisfactorily with the shift of C_4 in C_6H_5 -R (by a line through the origin and the point for R=H) suggesting that π -electron withdrawal by Sn(CH₃)₃ was unimportant or somehow balanced by other substituent-induced effects. The C_1 -¹¹⁹Sn coupling constants respond to substituents and range from ca 488 Hz for p-CH₃ and p-OCH₃ to 452 Hz for p-Cl, and 442 Hz for m-Cl. For substituents with larger σ -constants, the coupling constants decline. The opposite trend occurs in the 119 Sn-CH₃ coupling constants although the range is much less eg. for m-Cl, J=356.8 Hz while for p-OCH₃, J=347 Hz. These responses are accommodated by the hypothesis² that as the electron donating ability of R increases those hybrid orbitals directed from Sn to C_1 will have exalted 5s character and hence an increased coupling constant if the (Fermi) contact mechanism is dominant. This does seem indicated by the relative magnitudes of $J_{C,-119_{sn}}$ (473 Hz) and $J_{CH_3-119Sn}$ (351 Hz) which reflect the s-coefficient ratio for sp² and sp³ hybridised carbons in the crude V.B. approach.

It is noteworthy that the order of coupling to ring carbons is $J_{C_1-Sn}J_{C_3}$ \int_{C_2-Sn} , J_{C_4-Sn} , which order is also obeyed for C_6H_5 -X where X=H, B^{Θ} ,C,P $^{\Theta}$,Hg,Pb.^{3,4}3

The data is condensed in Table 2.

TABLE 2

 t = Not determined. $*$ =119 $\mathrm{Sn},$ 117 Sn couplings not resolved.

* Assignments confirmed by examination of 0-deuterated compound.

Regarding chemical shifts, the most noteworthy feature is the increased shielding of C_{μ} in benzyltrimethylstannane compared with the carbon analogue, neopentylbenzene. $(\Delta=2.4 p.p.m.).$ This is in line with the pronounced hyperconjugative electron-releasing ability of the CH₂Sn(CH₃)₃ substituent^{3,6}. Note also the variation in coupling from ¹¹⁹Sn to aryl carbons where in the benzyl case, $J_{C_1-Sn}J_{C_2-Sn}J_{C_4-Sn}J_{C_3-Sn}$ (cf. phenyl case where $J_{C_3-Sn}J_{C_4-Sn}$). The larger coupling to C_4 compared with C_3 , may also be due to a C-Sn σ - π resonance interaction with the ring, promoting the π -type coupling mechanism to C_4 ³.

Other systems capable of sustaining appreciable σ - π interactions are the allyl⁷ and allenyl trimethylstannanes, and here $J_{C_3-Sn}J_{C_2-Sn}$ also.

> 82.8 55.7 175 203.3 129.0 -17.8 117.6 202.2 $CH_2 \implies CH \text{ } \longrightarrow CH_2 \longrightarrow \text{Sn}(\text{CH}_3)_3$ $CH_2 \implies C \implies CH \implies \text{Sn}(\text{CH}_3)_3$ (52.9) (48) (298) (325) (45.5) (13.0) (382) (356)

Notice the variation in $J_{119Sn-C1}$ in both systems due to the differing s-content in the C_1 hybrid orbital directed to Sn.

The ¹³C n.m.r. data on phenyl, benzyl and related compounds⁸ provides a basis for assignments in organo-tin systems and has facilitated assignments in larger ring systems⁹.

We thank the Australian Research Grants Committee for support of this work and Prof. N.V. Riggs for some helpful discussions. M.& T. Corp., donated quantities of organotin compounds.

REFERENCES

1. See, for example G.L. Nelson, G.C. Levy and J.D. Cargioli, J. Amer. Chem. Soc., 94 $3089(1972)$

2. H.A. Bent, Chem. *Rev.,* 61 - 275 (1961)

- 3. D.Doddrell, B.D. Gupta, W. Adcock, M. Bullpitt and W. Kitching,J.Amer.Chem.Soc., submitted.
- 4. F.J. Weigert and J.D. Roberts, J. Amer. Chem. Soc, 91 4940 (1969).
- 5. A.M. Ihrig and J.L. Marshall, J. Amer. Chem. Soc., 94 1756 (1972).
- 6. W. Hanstein, H.J. Berwin and T.G. Traylor, J. Amer. Chem. Soc., 92 7476 (1970)
- 7. R.D. Bach and P.A. Scharr, *J. Amer. Chem. Sot., 94 220 (1972) 6* subsequent papers.
- 8. M. Bullpitt, W. Kitching, W. Adcock and D. Doddrell, Chem. Comm., (submitted).
- 9. M. Bullpitt. Unpublished results.